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Abstract 

The convective instability of a porous layer saturating a viscoplastic Casson nanofluid is investigated analytically and numerically. 

Darcy Brinkman model is used to frame momentum equation for the system and non-Newtonian behavior is explored for Casson fluid. 

The model incorporates the diffusion coefficients due to Brownian motion and thermophoresis. Normal mode technique is used to 

simplify the governing equations and linear stability theory is employed. The present study finds the expressions of thermal Rayleigh 

number for free- free, rigid-free and rigid-rigid boundaries and discusses the effects of various parameters on the onset of convection 

currents in the fluid layer using the software Wolfram Mathematica. Out of all three boundaries, rigid-rigid boundaries make the fluid 

layer most stable. It is found that Darcy number and porosity parameter delay the onset of convection currents in the fluid layer while 

Casson parameter, nanoparticle Rayleigh number and Lewis number show a destabilizing influence on the system.  
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Nomenclature 

                                                                                                                                                                                                                            

a     wave number                                                                 m     thermal diffusivity of fluid                                                                                       

pc     specific heat capacity                                                           Casson parameter  

d     depth of the layer                                                           t       thermal volumetric coefficient   

bD     Brownian diffusion coefficient                                             conductivity variation parameter             

tD     thermophoresis diffusion coefficient                                     porosity                    

ije      deformation rate                                                                    effective viscosity parameter 

 g       acceleration due to gravity                                            d       dynamic viscosity                                           

 k       thermal conductivity of nanofluid                                          stress tensor 

mk      overall thermal conductivity                                          
p        nanoparticle density 
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K       Permeability                                                                   0        fluid density at temperature 0T  

xm     wave number in x-pivot                                                ( )mc    effective heat capacity                                                                      

yn      wave number in y-pivot                                                       thermal capacity                                                                                     

  p       pressure                                                                           Relative nanoparticle volume fraction  0

1 0

 

 




 

  s       growth rate                                                                     Non-dimensional parameters  

   t       time                                                                                aD       Darcy parameter   

  T      temperature                                                                    nL        nanofluid Lewis number                                                                  

  0T     temperature at upper layer                                             aN      diffusivity ratio     

  1T      temperature at lower layer                                             bN      particle density increment                                            

  Du     Darcy-velocity ( ( , , )u u v w )                                        rp       Prandtl number 

  
yY       yield stress for Casson fluid                                         aR       Darcy-Rayleigh number 

( , , )x y z    cartesian co-ordinate system                                    mR       basic-density Rayleigh number 

  z           an axis of coordinate system                                     nR       nanoparticle Rayleigh number 

  Superscripts                                                                                     

   ^       perturbed variable                                                                                            

  *       non-dimensional variable 

Greek-symbols 

 

1. Introduction 

Nowadays, there has been a great interest in nanofluids, which are a combination of ordinary fluid with a small number of suspended 

metallic or non-metallic particles and resulting fluid was coined as ‘Nanofluid’ by Choi [1]. Nanofluids transfer heat more efficiently 

than the conventional fluids and are widely utilized in a variety of applications including as a coolant in automobiles, as a fuel and to 

minimize heat resistance in medical and electrical equipment. Buongiorno [2] made a significant contribution to nanofluid modelling 

by pointing out that the absolute velocity of nanoparticles is the sum of the base fluid velocity and the relative velocity. The model 

was further used by many researchers [3-6] to study the convective heat transfer in nanofluids and was modified by Nield and 

Kuznetsov [7] to consider the solutal effects on a nanofluid layer. The analytical investigations were made to establish the 

destabilizing impact of solute and nanoparticles on the system. Gupta et al. [8] considered a binary nanofluid layer under magnetic 

field. Contrary to solutal and nano scale effects, magnetic field was found to delay the convection in the layer. To consider the 

influence of density as well as conductivity of nanoparticles on the fluid, steady state solution for nanoparticle volume fraction was 

assumed to be constant [9] and the problem was studied numerically for different metallic and non-metallic nanofluids. The fluid flow 

through porous media has been a subject of active research due to its wide range of applications in fields of science and engineering. 

Nield and Kuznetsov [10] studied the thermal convection problem for nanofluids in porous medium using Brinkman model for all 

three boundaries (both free, rigid-free, both rigid).  Rotation and magnetic field make the binary nanofluid layer more stable while 

porosity effects speed up the initiate the convection currents in the fluid layer [11,12]. Dhananjay et al. [13] examined the instability 

of a porous layer under internal heat source and both Darcy number and porosity contribute in the stability while internal heat source 

and nanoparticles destabilize the system.  

 

Casson model fits well to various non-Newtonian fluids [14] such as blood, jelly, tomato sauce, honey, soup and concentrated fruit 

juices etc. Blood behaves like a Casson fluid in moderate shear rate flows, according to Blair and Spanner [15], thus it is reasonable to 

infer blood is a Casson fluid. Casson's equation's success was investigated by Scott Blair [16]. They discovered the dual nature 

solution for the suggested model with thermal radiation impacts on both the steady and unsteady Casson fluid flow by Hamid et al. 

[17]. Natural convection in a partially heated porous medium was examined by Aneja et al. [18] for Casson fluid and the penalty finite 

element approach was used to solve the flow problem's non-linear coupled equations. Recently, Casson model is used for various 

nanofluid flow problems to study the impact of nanoparticles on blood flow. Effect of variable thermal conductivity and viscosity on a 

boundary layer MHD Casson nanofluid flow with convective heating and velocity slip was considered by Gbadeyan et al. [19]. 

http://www.jetir.org/


© 2022 JETIR March 2022, Volume 9, Issue 3                                                               www.jetir.org (ISSN-2349-5162) 

JETIR2203265 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c489 
 

Casson nanofluid convection in an internally heated layer was studied by Gupta et al. [20]. Recently, Gupta et al. [21] studied double-

diffusive instability of Casson nanofluids and numerical investigations were made for blood-based fluid.  

 

Unlike the previous works, the present paper studies the phenomenon of Darcy-Brinkman convective instability in a non-Newtonian 

(Casson) nanofluid layer saturating porous medium. The set of partial differential equations satisfying conservation laws are 

converted to ordinary using normal mode technique [22] and linear stability theory is employed. These equations are solved using one 

term Galerkin method to find eigen value equations for free-free, rigid-free and rigid-rigid boundaries. Top layer of configuration is 

assumed to have less nanoparticle volume fraction as compared to lower which assures the non-occurrence of oscillatory motions 

[7,10]. The stationary convective instability is illustrated through graphs for critical Rayleigh number versus Casson parameter for 

different values of nanoparticle Rayleigh number, modified diffusivity ratio, Lewis number, Darcy number, modified particle-density 

increment and porosity on the stability of the system. It is found that Darcy number and porosity have stabilizing impact while Casson 

parameter, nanoparticle Rayleigh number, Lewis number show a destabilizing influence. Also, modified diffusivity ratio and particle 

density increment parameters do not have any impact on the instability of the system.  

 

2. Governing equations for fluid flow 

An infinite horizontal layer of incompressible nanofluid saturating porous medium is considered having thickness d. Also, a cartesian 

coordinate system (x, y, z) is chosen such that z-axis is perpendicular to the boundaries and gravity acts along the negative direction 

of z-axis. The boundaries of the porous layer have temperature and nanoparticles concentration as 1 1T and   at lower boundary z=0 

while 0 0T and  at upper boundary z=d (where 1 0 1 0T T and    ) (refer; Fig.1.) 

 

                                                     Fig. 1. Geometry of the problem. 

 

The governing equation for Casson fluid flow (refer; [23]) is 
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The governing equations for a Casson nanofluid layer are (refer; [2,5])  

 

. 0,Du                                                                                                                                                                  (2) 

    0

0 01 (1 ) .D

D P t

u
p div u T T g

t K

 
     




          

                                                             (3) 

Using Eq. (1) in Eq. (3), we get 
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Let us assume that the temperature and volumetric fractions are constant on the boundaries and hence boundary conditions become 
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                                                                                               (7) 

 

where the parameters 1 2l and l  take the value   for free boundaries and 0 for rigid boundaries.                                                                                                                    

 

Now we non-dimensionlize the variables as 

 

       * * * * 2 * * * *, , / , , , / , , , / , , , / ,m m mx y z d x y z t t d u v w d u v w p pd      

       * *

1 0 1 0 1 0/ , / ,T T T T T T         where      / , / .m m f m f
k c c c                               (8)  

 

Using Eqs. (8), Eqs. (2)-(7) (after dropping the asterisks) become 
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And boundary conditions become for unit depth of layer are 
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 3. Steady state solutions and normal mode technique 

 

Initially, the fluid layer is at rest and variables vary along horizontal axis. Thus Eqs. (9)-(12) give 

 

( ) 1 , ( ) .T z z z z                                                                                                                                           (15) 

 

Now we add perturbations to initial solutions and write 

                                                                                                                      

ˆ ˆˆ ˆ, , , .u u u p p p T T T                                                                                                                   (16) 

 

Equations (9)-(12) with the help of Eqs. (15 and 16), give us a set of perturbed differential equations as 

 

ˆ. 0,u                                                                                                                                                                  (17) 
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Now on Eq. (18) together with Eq. (17) and using the relation 2curlcurl graddiv  , we get 
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To use normal mode technique on Eqs. (17)-(21), let us write perturbed variables as [refer; 22] 
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Using Eq. (22) in Eqs. (17)-(21), we get 
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d
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    .                                                                                                                      

The boundary conditions for both free, rigid-free and both rigid boundaries (given by Eq. (14)) reduce to  

 
2 0 0 1, .W D W T at z for free free boundaries                                                                            (26) 

 

2
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0 1, .
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0 0 1, .W DW T at z for both rigid boundaries                                                                             (28) 

 

 

Equations (23)-(25) are solved using one-term Galerkin method to get the expressions of Darcy-Rayleigh number for free-free, rigid-

free and rigid-rigid boundaries given by Eqs. (26)-(28). 

  

4. Expression of Rayleigh number (for s=0) 

 

4.1 Free-free boundaries 

 

If both the boundaries of the fluid layer are free then the boundary conditions can be taken as [Eq. 26] 

 
2 0 0 1.W D W T at z and z                                                                                                              (29) 

 

Trial solutions satisfying Eq. (29) are 

 

( , , ) ( , , ) sin ,W T L M N z                                                                                                                                (30) 
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 Using one term Galerkin method, put these trial solutions in Eqs. (23)-(25) and then solve residue integrals to get a system of 

equations in three unknown coefficients L, M, N. Then eigen value equation after elimination of unknowns, gives the expression for 

Rayleigh number as  
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where 2 2.J a   

 

4.2 Rigid-free boundaries 

 

The boundary conditions for rigid-free boundaries are [Eq. (27)] 

 

0 0W DW T at z      (rigid boundary), 

2 0 1W D W T at z      (free boundary).                                                                                             (32) 

 

The trial solutions for such boundaries are 

 
2 (1 )(3 2 ),W L z z z   2( ),T M z z  2( ),N z z                                                                                          (33) 

 

Using Eq. (33) in Eqs. (23)-(25), one term Galerkin method gives the expression for Rayleigh number as 

 
2 4 2 2 2 2 2

2 2

28[ (1 1/ )(4536 432 19 ) (216 19 ))](10 ) 507 (10 )
.

507 (10 )

a n n

a n a

D a a a a a R L a
R R N

a a

  



       
 


         (34)   

                                                                           
                                                                                                                                                                                                                                                                   
4.3. Rigid-rigid boundaries 

 

Let us take the rigid-rigid boundary conditions as [Eq. (28)] 

 

0 0 1.W DW T at z and z                                                                                                               (35)                                                                                                    

 

We can write the trial solutions as 

  
4 3 2( 2 ),W L z z z   2( ),T M z z    2( ).N z z                                                                                          (36) 

 

 Equations (23)-(25) can be solved by using one-term Galerkin method for rigid-rigid boundary conditions with the help of these trial 

solution (Eq. (36)) and gives the expression for Rayleigh number as 
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5. Validation of Results and Approximate Solution 

 

5.1.  Both Free boundaries   

 

When    in the Rayleigh number expression in Eq. (31) matches the expression given by Nield and Kuznetsov [10]  
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When 1aD  then 227
( ) ,

4

n
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L
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    that is the lowest value attained at 

2
a


 . 

Therefore, using the large value of aD  as unity, critical wave number for free-free boundary is around 2.22 and critical Rayleigh 

number is around 657.5.  
 

5.2. Rigid-free boundaries 

 

Equation (34) by putting   , provides the expression of Rayleigh number as 
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which is same as that of Nield and Kuznetsov [10] for rigid-free boundaries. Also, Eq. (40) can be written as  

                                                                                        
2 4 2 2

2

28 [ (1 1/ ) (4536 432 19 ) 216 19 ](10 )
( ) .
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n a

a n a

L D a a a a
R R N

a





     
                                           (41)   

When 0aD  then ( ) 48.01,n

a n a

L
R R N


    which is minimum value obtained at 3.27a  .     

When 1aD  then ( ) 1139,n

a n a

L
R R N


    which is minimum value obtained at 2.67a  . 

Hence, critical wave number for rigid-free boundaries is 2.67 when aD  is large compared with unity which is also used to calculate 

the value of critical Rayleigh number as 1139.  

 

                                                                     
5.3. Rigid-rigid boundaries 

 

Let us take    in Eq. (37), we get expression of Rayleigh number 

 
2 4 2 2

2

28[ (504 24 ) (12 ))](10 )
( ).

27

a n

a n a

D a a a a L
R R N

a 

    
                                                                      (42) 

                                                                                                     

This is the same expression given by Nield and Kuznetsov [10] for porous layer only. Eq. (41) can also be written as 

2 4 2 2

2

1
28[ (1 )(504 24 ) (12 ))](10 )

( ) .
27

a

n

a n a

D a a a a
L

R R N
a





     

                                                           (43)   

When 0aD  then ( ) 43.92,n

a n a

L
R R N


    which is minimum value obtained 3.31a  .     

When 1aD  then ( ) 1750,n

a n a

L
R R N


    which is minimum value obtained at 3.12a  .                                                              

Hence, when aD  is very large as compared with unity then critical wave number for rigid-rigid boundaries is 3.12 and critical 

Rayleigh number 1750 approximately. 

Here, right hand side of Eq. (43) is higher than that of Eqs. (39) and (41) and hence rigid-rigid boundaries are more practical 

boundaries.  

  

 

6. Numerical results and discussions  

 

   Let us look at the problem numerically to see how the value of critical Rayleigh number varies with Casson parameter for fixed 

values of different parameters using the software Wolfram Mathematica. The expressions of Rayleigh number (Eqs. (31), (34), and 

(37)) are dependent on multiple parameters. Let us take fixed values of parameters as follows: 

100, 1, 0.01, 0.1, 0.5, 0.9n a b n aL N N R D        and vary one of the variables to analyze its impact on instability of the system.  

Figure 2 depicts the relationship between critical Rayleigh number and Casson parameter   for various values of nanoparticle 

Rayleigh-number nR  with all three boundaries for fixed values of other parameters. It is noted that when nanoparticle Rayleigh 

number increases (increment in volumetric fraction, increases the Brownian motion of the nanoparticles), critical Rayleigh number 

decreases with respect to Casson parameter   and hence nanoparticle Rayleigh number has a destabilizing effect on the system. 

Figure 3 plots the graph of critical Rayleigh number as a function of Casson parameter  for different values of modified diffusivity 
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ratio
aN . One can easily observe that critical Rayleigh number for all three (rigid-free, rigid-rigid and free-free) boundaries do not get 

affected by increment in modified diffusivity ratio
aN  and hence doesn’t have any impact on the initiation of convection currents in 

the fluid layer system.  

 

        
Fig. 2 Critical aR versus  for different values of nR .   Fig. 3 Critical aR versus  for different values of aN . 

 

 

There is no significant change in the stability curves for different values of modified particle-density increment bN as interpreted in 

Fig.4 and hence doesn’t have much impact on the onset of instability of the fluid layer. Figure 5 shows the stability curves of critical 

Rayleigh-number in the presence of Casson parameter  for different values of Lewis number nL . It is observed that critical Rayleigh 

number decreases for increasing values of Lewis number and therefore a destabilizing impact of Lewis number is established for all 

three boundaries.  

 

          
Fig. 4 Critical aR versus  for different values of bN .   Fig. 5 Critical aR versus  for different values of nL . 

 

 

 

                   
Fig. 6 Critical aR versus  for different values of  .     Fig. 7 Critical aR versus  for different values of aD .   

 

Figure 6 depicts the effect of porosity parameter   on critical Rayleigh number and it is noted that when porosity parameter increases, 

value of critical Rayleigh number also increases. So, it is indicating that porosity parameter delays the onset of convection in the 

nanofluids layer. Figure 7 plots the stability curves of critical Rayleigh number as function of Casson parameter  for different values 

of Darcy parameter. It is clear from the graph that the value of critical Rayleigh number increases with an increment in Darcy 
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parameter and hence it delays the onset of convection in the nanofluid layer system. The reason for this is the increment in effective 

viscosity with the increment in Darcy parameter which retards the fluid flow. In Figs. 2-7, for smaller values of Casson parameter, 

critical Rayleigh number decreases rapidly whereas for increasing values of    doesn’t show much variation in its values. 

 

To know the effect of Darcy parameter more efficiently, let us plot the graphs of log aD  versus critical Rayleigh number
caR and 

log aD  versus critical wave number ca .  Here, one can observe that the values of 
caR  increases when Darcy parameter increases in 

Fig. 8 and hence has a stabilizing effect on the system. Figure 9 shows that when Darcy parameter increases, critical wave number 

decreases which leads to increase in the size of convection cells and hence delays the onset of convection.     

 

 

             
 

  Fig. 8 Critical aR versus log aD .                                                Fig. 9 Critical ca versus log aD  . 

 

  

 
 

Fig. 10 Critical wave number ca versus  . 

 

Effect of Casson parameter   on critical wave number ca  is shown in Figure 10. It is observed that the value of critical wave 

number ca doesn’t vary much with the variation in Casson parameter  and only small values of Casson parameter has a slight effect 

on the value of critical wave number. Thus, non-Newtonian behaviour largely doesn’t show any impact on critical wave number.   

 

Interestingly, in all the figures the critical Rayleigh number for rigid-rigid boundaries is greater than that of rigid-free boundaries, 

which is more than that of free-free boundaries and thus the system is the most stable for realistic rigid-rigid boundaries.                                                                                                                                                                                                                  

 

7. Conclusions 

 

The convective instability of a non-Newtonian nanofluid layer under Casson model is investigated analytically and numerically using 

Darcy-Brinkman model. Normal mode technique is used to convert partial differential equations into ordinary and linear stability 

theory is employed. The obtained set of ordinary differential equations are solved using one term Galerkin method to find an eigen 

value equation for free-free, rigid-free and rigid-rigid boundaries. Effect of Casson parameter on critical Rayleigh number for 

different values of nanoparticle Rayleigh number, modified diffusivity ratio, Lewis number, Darcy number, modified particle-density 

increment and porosity on the stability of the system are illustrated graphically using the software Mathematica. It is found that 

critical wave number for rigid-rigid boundaries are higher than that of rigid-free and free-free boundaries and critical wave number is 

independent of nanoparticle Rayleigh number, modified diffusivity ratio and Lewis number. It is found that Darcy number and 

porosity have stabilizing effect on the system while other nanofluid parameters show a destabilizing effect on the fluid layer. 

Modified diffusivity ratio and particle density increment parameters do not show much impact on the onset of convection currents in 
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the system. Non-Newtonian property (Casson parameter) destabilizes the system significantly for small values of Casson parameter 

which otherwise doesn’t show much influence on the stability of the fluid layer. Out of all three boundaries, the system is found to be 

most stable for realistic rigid-rigid boundaries.    
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